Rigol-DG2052-Function-Gener.../examples/discrete_sweep.py
2024-07-29 15:51:14 +02:00

138 lines
4.3 KiB
Python

import time
import argparse
import fn_gen.errors as fg_err
from common import (
close_output,
get_preamplified,
get_postamplified,
AMPLIFICATION,
N_CYCLES,
V_STEPS,
F_STEPS,
FREQ_START,
FREQ_STOP,
STEP_DURATION,
)
from fn_gen import DG2052
import numpy as np
def calculate_n_samples(freq: float, ts: float, n_cycles: int) -> int:
"""
Calculates the number of samples based on the frequency of the signal, the sampling time and the number of cycles within one step.
Parameters
---------
freq: int
The frequency of the signal
ts: float
The sampling time
n_cycles: int
The number of cycles within a step
Returns
------
n_samples: int
The number of samples (can be multiplied by the sampling time (ts) to get the total duration)
"""
return int(round(n_cycles / (ts * freq)))
def discrete_sweep(
v_min: float,
v_max: float,
v_steps: int,
adaptive: bool,
step_duration: int,
freq_start: int,
freq_stop: int,
f_steps: int,
):
##################### PROGRAM START ###########
freqs = np.logspace(np.log10(freq_start), np.log10(freq_stop), f_steps)
v_min = get_preamplified(AMPLIFICATION, v_min)
v_max = get_preamplified(AMPLIFICATION, v_max)
volts = np.linspace(v_min, v_max, v_steps)
print(freqs)
fg = DG2052("TCPIP::192.168.1.11::INSTR")
channel = 2
try:
print(fg.whoami())
print("")
print(f"Output{channel} Impedance: {fg.get_output_impedance(channel)} Ohm")
print(f"Output{channel} Load: {fg.get_output_load(channel)} Ohm")
print(f"Output{channel} Voltage Limits: {fg.get_output_volt_limits(channel)} V")
for v in volts:
for freq in freqs:
sampling_rate = 10 * freq
n_samples = calculate_n_samples(freq, 1 / sampling_rate, N_CYCLES)
if adaptive:
step_duration = n_samples * (1 / sampling_rate)
print(f"V: {get_postamplified(AMPLIFICATION, v)} V")
print(f"Freq: {freq} Hz")
print(f"Duration: {step_duration} s")
print(f"N_Samples: {n_samples} samples")
fg.set_output(channel, False)
fg.set_square_wave(channel, freq, v, 0, 0)
fg.set_output(channel, True)
print(
f"Output{channel}: {fg.get_output_signal(channel)} | {fg.get_output_state(channel)}"
)
time.sleep(step_duration)
# fg.set_output(channel, False)
print(f"Output{channel} State: {fg.get_output_state(channel)}")
except fg_err.ValueOutOfBoundsError as err:
print(err)
except fg_err.UndefinedValueError as err:
print(err)
except KeyboardInterrupt:
close_output(fg, channel)
finally:
close_output(fg, channel)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="This program is for testing the DG2052 function genrator library. It does a discrete sweep with the supplied parameters."
)
parser.add_argument(
"--vmin", type=float, required=True, help="The minimum voltage supplied"
)
parser.add_argument(
"--vmax", type=float, required=True, help="The maximum voltage supplied"
)
parser.add_argument(
"--v-steps", type=int, default=V_STEPS, help="The number of voltage steps"
)
parser.add_argument(
"--freq-start", type=int, default=FREQ_START, help="The starting frequency"
)
parser.add_argument(
"--freq-stop", type=int, default=FREQ_STOP, help="The stop frequency"
)
parser.add_argument(
"--f-steps", type=int, default=F_STEPS, help="The number of steps"
)
parser.add_argument(
"--step-duration",
type=int,
default=STEP_DURATION,
help="The duration of each step",
)
parser.add_argument(
"--adaptive-step",
action="store_true",
help="Adapts the step duration to the frequency of the step",
)
args = parser.parse_args()
discrete_sweep(
v_min=args.vmin,
v_max=args.vmax,
v_steps=args.v_steps,
adaptive=args.adaptive_step,
step_duration=args.step_duration,
freq_start=args.freq_start,
freq_stop=args.freq_stop,
f_steps=args.f_steps,
)