|
|
|
|
@@ -1,303 +0,0 @@
|
|
|
|
|
### PLEASE DO NOT MIND THE FORMATTING, IT IS DONE AUTOMATICALLY BY 'BLACK' THE PYTHON FORMATTER
|
|
|
|
|
import logging
|
|
|
|
|
from typing import Literal
|
|
|
|
|
import pyvisa
|
|
|
|
|
from .common import check_bounds
|
|
|
|
|
from .constants.dg2052 import (SIN_RANGE, SQU_RANGE, RAMP_RANGE)
|
|
|
|
|
from .enums import CommMethod, SweepSpacing, SweepTriggerSlope, SweepTriggerSource, SweepSignalType
|
|
|
|
|
from .errors import UndefinedValueError, UndefinedCommunicationMethodError, ValueOutOfBoundsError
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class DG2052(pyvisa.resources.MessageBasedResource):
|
|
|
|
|
"""
|
|
|
|
|
This is an object representing the Rigol DG2052 function generator. This object uses the SCPI protocol for communicating with the Rigol DG2052 function generator.
|
|
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
|
----------
|
|
|
|
|
port : str
|
|
|
|
|
The SCPI port describing the device, consists of a communication method and device port followed by the "::INSTR" keyword.
|
|
|
|
|
communication method: can be either USB or TCPIP (other communication methods are not supported for this device)
|
|
|
|
|
device port: either COMM4 or /dev/USB0 for USB in windows and posix systems respectively or the IP Address for TCPIP
|
|
|
|
|
format: "<communication method>::<device port>::INSTR"
|
|
|
|
|
example: "TCPI::192.168.1.11::INSTR" or "USB::COMM4::INSTR"
|
|
|
|
|
|
|
|
|
|
Returns
|
|
|
|
|
-------
|
|
|
|
|
DG2052(pyvisa.resources.MessageBasedResource)
|
|
|
|
|
The object representing the instrument
|
|
|
|
|
|
|
|
|
|
Raises
|
|
|
|
|
------
|
|
|
|
|
UndefinedCommunicationMethodError
|
|
|
|
|
when the communication method is not a USB or TCPIP in the port string
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
comm: CommMethod # The communication method used (either TCPIP or USB)
|
|
|
|
|
rm: pyvisa.ResourceManager # The resource manager object for pyvisa (for future use)
|
|
|
|
|
port: str # The str used for the port
|
|
|
|
|
|
|
|
|
|
def __init__(self, port: str): # Class initialization method
|
|
|
|
|
if "TCPIP" in port: # Check if port starts with TCPIP
|
|
|
|
|
logging.debug("(PROG) detected TCPIP port")
|
|
|
|
|
self.comm = CommMethod.LAN # Set comm to LAN
|
|
|
|
|
elif "USB" in port: # Check if port starts with USB
|
|
|
|
|
logging.debug("(PROG) detected USB port")
|
|
|
|
|
self.comm = CommMethod.USB # Set comm to USB
|
|
|
|
|
else: # Rause Undefined Communication Method Error
|
|
|
|
|
raise UndefinedCommunicationMethodError(port)
|
|
|
|
|
rm = pyvisa.ResourceManager() # Create a pyvisa.ResourceManager object
|
|
|
|
|
self.rm = rm # Save that object as rm
|
|
|
|
|
self.port = port # Save the port string as port
|
|
|
|
|
super().__init__(rm, port) # create tne instrument object
|
|
|
|
|
logging.debug("(PROG) created dg2052 instance")
|
|
|
|
|
self.open() # connect to the instrument object (for ease of use)
|
|
|
|
|
logging.debug("(PROG) connected to dg2052 device")
|
|
|
|
|
|
|
|
|
|
def whoami(self) -> str:
|
|
|
|
|
"""
|
|
|
|
|
shows the identification of the connected instrument
|
|
|
|
|
|
|
|
|
|
Returns
|
|
|
|
|
-------
|
|
|
|
|
str
|
|
|
|
|
The identification of the connected instrument
|
|
|
|
|
"""
|
|
|
|
|
match (
|
|
|
|
|
self.comm
|
|
|
|
|
): # Return an Identification string depending on the communication method
|
|
|
|
|
# Here a match case is used to make it easy to extend the communication methods to other methods
|
|
|
|
|
case CommMethod.LAN: # if the communication method is LAN
|
|
|
|
|
logging.debug("(PROG) communication method: LAN")
|
|
|
|
|
(
|
|
|
|
|
manufacturer,
|
|
|
|
|
model,
|
|
|
|
|
serial,
|
|
|
|
|
software_ver,
|
|
|
|
|
) = tuple( # Acquire the data for the manufacturer, model, serial and software version from the '*IDN?' SCPI query
|
|
|
|
|
self.query("*IDN?").strip().split(",")
|
|
|
|
|
)
|
|
|
|
|
ipaddr = self.query(
|
|
|
|
|
":SYST:COMM:LAN:IPAD?"
|
|
|
|
|
).strip() # Get the IPAddress of the device
|
|
|
|
|
mac = self.query(
|
|
|
|
|
":SYST:COMM:LAN:MAC?"
|
|
|
|
|
).strip() # Get the MAC address of the device
|
|
|
|
|
out = (
|
|
|
|
|
f"{manufacturer} {model}:\n\tSerial Nr.:"
|
|
|
|
|
+ f" {serial}\n\tSoftware Ver.:"
|
|
|
|
|
+ f" {software_ver}\n\tPort:"
|
|
|
|
|
+ f" {self.port}\n\tIPADDRESS: {ipaddr}\n\tMAC: {mac}"
|
|
|
|
|
)
|
|
|
|
|
return out # return the formatted string
|
|
|
|
|
case CommMethod.USB: # if the communication method is USB
|
|
|
|
|
logging.debug("(PROG) communication method USB")
|
|
|
|
|
(
|
|
|
|
|
manufacturer,
|
|
|
|
|
model,
|
|
|
|
|
serial,
|
|
|
|
|
software_ver,
|
|
|
|
|
) = tuple( # Acquire the data for the manufacturer, model, serial and software version from the '*IDN?' SCPI query
|
|
|
|
|
self.query("*IDN?").strip().split(",")
|
|
|
|
|
)
|
|
|
|
|
# info = self.system.communicate.usb.information().strip()
|
|
|
|
|
info = self.query(
|
|
|
|
|
":SYST:COMM:USB:INF?"
|
|
|
|
|
).strip() # Get the USB info of the device
|
|
|
|
|
out = (
|
|
|
|
|
f"{manufacturer} {model}:\n\tSerial Nr.:"
|
|
|
|
|
+ f" {serial}\n\tSoftware Ver.:"
|
|
|
|
|
+ f" {software_ver}\n\tPort:"
|
|
|
|
|
+ f" {self.port}\n\tINFORMATION: {info}"
|
|
|
|
|
)
|
|
|
|
|
return out # return the formatted string
|
|
|
|
|
case _: # default case raise Undefined Communication Method Error
|
|
|
|
|
raise UndefinedCommunicationMethodError(self.port)
|
|
|
|
|
|
|
|
|
|
def set_output(self, channel: Literal[1, 2], state: bool):
|
|
|
|
|
"""
|
|
|
|
|
Sets the output channel ON or OFF
|
|
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
|
----------
|
|
|
|
|
channel : OutpuChannel
|
|
|
|
|
The output channel of the device (either OutputChannel.ONE or OutputChannel.TWO)
|
|
|
|
|
|
|
|
|
|
state : bool
|
|
|
|
|
The state of the output channel
|
|
|
|
|
"""
|
|
|
|
|
if state:
|
|
|
|
|
logging.debug(f"(PROG) :OUTP{channel} ON")
|
|
|
|
|
self.write(f":OUTP{channel} ON")
|
|
|
|
|
else:
|
|
|
|
|
logging.debug(f"(PROG) :OUTP{channel} OFF")
|
|
|
|
|
self.write(f":OUTP{channel} OFF")
|
|
|
|
|
|
|
|
|
|
def toggle_output(self, channel: Literal[1, 2]):
|
|
|
|
|
state = self.query(f":OUT{channel}?").strip()
|
|
|
|
|
logging.debug(f"(PROG) output {channel} state: {state}")
|
|
|
|
|
match (state):
|
|
|
|
|
case "ON":
|
|
|
|
|
self.set_output(channel, False)
|
|
|
|
|
case "OFF":
|
|
|
|
|
self.set_output(channel, True)
|
|
|
|
|
case _:
|
|
|
|
|
raise UndefinedValueError(state, "ON or OFF")
|
|
|
|
|
|
|
|
|
|
def get_output_volt_limits(self, channel: Literal[1, 2]) -> tuple[float, float]:
|
|
|
|
|
low: float = float(self.query(f":OUTP{channel}:VOLL:LOW?"))
|
|
|
|
|
high: float = float(self.query(f":OUTP{channel}:VOLL:HIGH?"))
|
|
|
|
|
logging.debug(f"(PROG) output {channel} limits: {low}, {high}")
|
|
|
|
|
return low, high
|
|
|
|
|
|
|
|
|
|
def get_output_impedance(self, channel: Literal[1, 2]) -> float:
|
|
|
|
|
impedance = float(self.query(f":OUTP{channel}:IMP?"))
|
|
|
|
|
logging.debug(f"(PROG) output {channel} impedance: {impedance}")
|
|
|
|
|
return impedance
|
|
|
|
|
|
|
|
|
|
def get_output_load(self, channel: Literal[1, 2]) -> float:
|
|
|
|
|
load = float(self.query(f":OUTP{channel}:LOAD?"))
|
|
|
|
|
logging.debug(f"(PROG) output {channel} load: {load}")
|
|
|
|
|
return load
|
|
|
|
|
|
|
|
|
|
def get_output_signal(self, channel: Literal[1, 2]) -> str:
|
|
|
|
|
signal = self.query(f":SOUR{channel}:APPL?").strip()
|
|
|
|
|
logging.debug(f"(PROG) output {channel} signal: {signal}")
|
|
|
|
|
return signal
|
|
|
|
|
|
|
|
|
|
def get_output_state(self, channel: Literal[1, 2]) -> str:
|
|
|
|
|
state = self.query(f":OUTP{channel}?").strip()
|
|
|
|
|
logging.debug(f"(PROG) output {channel} state: {state}")
|
|
|
|
|
return state
|
|
|
|
|
|
|
|
|
|
def is_output_on(self, channel: Literal[1, 2]) -> bool:
|
|
|
|
|
channel_state = self.get_output_state(channel)
|
|
|
|
|
match channel_state:
|
|
|
|
|
case "ON":
|
|
|
|
|
return True
|
|
|
|
|
case "OFF":
|
|
|
|
|
return False
|
|
|
|
|
case _:
|
|
|
|
|
raise UndefinedValueError(channel_state, "ON or OFF")
|
|
|
|
|
|
|
|
|
|
def set_dc(self, channel: Literal[1, 2], offset: float):
|
|
|
|
|
logging.debug(f"(PROG) set dc signal with offset: {offset}")
|
|
|
|
|
self.write(f":SOUR{channel}:APPL:DC 1,1,{offset}")
|
|
|
|
|
|
|
|
|
|
def set_sine_wave(
|
|
|
|
|
self,
|
|
|
|
|
channel: Literal[1, 2],
|
|
|
|
|
freq: float = 1e3,
|
|
|
|
|
amp: float = 5.0,
|
|
|
|
|
offset: float = 0.0,
|
|
|
|
|
phase: int = 0,
|
|
|
|
|
):
|
|
|
|
|
if freq < SIN_RANGE[0] and freq > SIN_RANGE[1]:
|
|
|
|
|
raise ValueOutOfBoundsError(SIN_RANGE, freq)
|
|
|
|
|
if phase < 0 and phase > 360:
|
|
|
|
|
raise ValueOutOfBoundsError((0, 360), phase)
|
|
|
|
|
logging.debug(
|
|
|
|
|
f"(PROG) set sine signal with freq: {freq}, amp: {amp}, offset: {offset}, phase: {phase}"
|
|
|
|
|
)
|
|
|
|
|
self.write(f":SOUR{channel}:APPL:SIN {freq},{amp},{offset},{phase}")
|
|
|
|
|
|
|
|
|
|
def set_square_wave(
|
|
|
|
|
self,
|
|
|
|
|
channel: Literal[1, 2], # Sets the output channel of the ramp function
|
|
|
|
|
freq: float = 1e3, # Sets the frequency
|
|
|
|
|
amp: float = 5.0, # Sets the amplitude
|
|
|
|
|
offset: float = 0.0, # Sets the amplitude offset
|
|
|
|
|
phase: int = 0, # Sets the phase shift
|
|
|
|
|
):
|
|
|
|
|
check_bounds(SQU_RANGE, freq)
|
|
|
|
|
check_bounds((0, 360), phase)
|
|
|
|
|
logging.debug(
|
|
|
|
|
f"(PROG) set square signal with freq: {freq}, amp: {amp}, offset: {offset}, phase: {phase}"
|
|
|
|
|
)
|
|
|
|
|
self.write(f":SOUR{channel}:APPL:SQU {freq},{amp},{offset},{phase}")
|
|
|
|
|
|
|
|
|
|
def set_ramp(
|
|
|
|
|
self,
|
|
|
|
|
channel: Literal[1, 2], # Sets the output channel of the ramp function
|
|
|
|
|
freq: float = 1e3, # Sets the frequency
|
|
|
|
|
amp: float = 5, # Sets the amplitude
|
|
|
|
|
offset: float = 0, # Sets the amplitude offset
|
|
|
|
|
phase: int = 0, # Sets the phase shift
|
|
|
|
|
):
|
|
|
|
|
check_bounds(RAMP_RANGE, freq)
|
|
|
|
|
check_bounds((0, 360), phase)
|
|
|
|
|
logging.debug(
|
|
|
|
|
f"(PROG) set ramp signal with freq: {freq}, amp: {amp}, offset: {offset}, phase: {phase}"
|
|
|
|
|
)
|
|
|
|
|
self.write(f":SOUR{channel}:APPL:RAMP {freq},{amp},{offset},{phase}")
|
|
|
|
|
|
|
|
|
|
def set_sweep(
|
|
|
|
|
self,
|
|
|
|
|
channel: Literal[1, 2], # Sets the output channel of the sweep function
|
|
|
|
|
amp: float = 5, # Sets the amplitude of the sweeped signal
|
|
|
|
|
offset: float = 0, # Sets the offset voltage of the sweeped signal
|
|
|
|
|
phase: int = 0, # Sets the phase shift of the sweeped signal
|
|
|
|
|
signal_type: SweepSignalType = SweepSignalType.SINE, # Sets the type of signal being sweeped
|
|
|
|
|
htime_start: float = 0, # Sets the start hold time of the sweep function
|
|
|
|
|
htime_stop: float = 0, # Sets the stop hold time of the sweep function
|
|
|
|
|
freq_start: float = 100, # Sets the sweep starting frequency
|
|
|
|
|
freq_stop: float = 1e3, # Sets the sweep stopping frequency
|
|
|
|
|
marker: bool = False, # Enables/Disables setting the marker frequency manually
|
|
|
|
|
freq_marker: float = 550, # Sets the marker frequency at whic the Sync signal changes from high to low
|
|
|
|
|
rtime: float = 0, # Sets the return time of the sweep function
|
|
|
|
|
time: float = 1, # Sets the sweep time
|
|
|
|
|
spacing: SweepSpacing = SweepSpacing.LIN, # Sets the sweep type
|
|
|
|
|
step: int = 2, # Sets the number of steps of the sweep function
|
|
|
|
|
trigger_slope: SweepTriggerSlope = SweepTriggerSlope.POSITIVE, # Sets the edge type of the trigger input signal (for external trigger only)
|
|
|
|
|
trigger_source: SweepTriggerSource = SweepTriggerSource.INTERNAL, # Sets the sweep trigger source
|
|
|
|
|
):
|
|
|
|
|
time_bounds: tuple[float, float] = (0, 500)
|
|
|
|
|
command_header = f":SOUR{channel}:SWE"
|
|
|
|
|
check_bounds(time_bounds, htime_start)
|
|
|
|
|
check_bounds(time_bounds, htime_stop)
|
|
|
|
|
check_bounds(time_bounds, rtime)
|
|
|
|
|
check_bounds((2, 1024), step)
|
|
|
|
|
check_bounds((1e-3, 599.0), time)
|
|
|
|
|
match signal_type:
|
|
|
|
|
case SweepSignalType.SINE:
|
|
|
|
|
self.set_sine_wave(channel, amp=amp, offset=offset, phase=phase)
|
|
|
|
|
case SweepSignalType.SQUARE:
|
|
|
|
|
self.set_square_wave(channel, amp=amp, offset=offset, phase=phase)
|
|
|
|
|
case SweepSignalType.RAMP:
|
|
|
|
|
self.set_ramp(channel, amp=amp, offset=offset, phase=phase)
|
|
|
|
|
self.write(f":SOUR:FREQ:STAR {freq_start}")
|
|
|
|
|
self.write(f":SOUR:FREQ:STOP {freq_stop}")
|
|
|
|
|
if marker:
|
|
|
|
|
self.write(":SOUR:MARK ON")
|
|
|
|
|
self.write(f":SOUR:MARK:FREQ {freq_marker}")
|
|
|
|
|
else:
|
|
|
|
|
self.write(":SOUR:MARK OFF")
|
|
|
|
|
self.write(f"{command_header}:SPAC {spacing}")
|
|
|
|
|
self.write(f"{command_header}:STEP {step}")
|
|
|
|
|
match trigger_source:
|
|
|
|
|
case SweepTriggerSource.INTERNAL:
|
|
|
|
|
self.write(f"{command_header}:TRIG:SOUR INT")
|
|
|
|
|
self.write(f"{command_header}:HTIM:STAR {htime_start}")
|
|
|
|
|
self.write(f"{command_header}:HTIM {htime_stop}")
|
|
|
|
|
self.write(f"{command_header}:RTIM {rtime}")
|
|
|
|
|
self.write(f"{command_header}:TIME {time}")
|
|
|
|
|
case SweepTriggerSource.EXTERNAL:
|
|
|
|
|
self.write(f"{command_header}:TRIG:SOUR EXT")
|
|
|
|
|
if trigger_slope == SweepTriggerSlope.POSITIVE:
|
|
|
|
|
self.write(f"{command_header}:TRIG:SLOP POS")
|
|
|
|
|
elif trigger_slope == SweepTriggerSlope.NEGATIVE:
|
|
|
|
|
self.write(f"{command_header}:TRIG:SLOP NEG")
|
|
|
|
|
else:
|
|
|
|
|
UndefinedValueError(
|
|
|
|
|
trigger_slope,
|
|
|
|
|
"SweepTriggerSlope.Positive or SweepTriggerSlope.Negative",
|
|
|
|
|
)
|
|
|
|
|
case SweepTriggerSource.MANUAL:
|
|
|
|
|
self.write(f"{command_header}:TRIG:SOUR MAN")
|
|
|
|
|
case _:
|
|
|
|
|
UndefinedValueError(
|
|
|
|
|
trigger_source, "SweepTriggerSource.[INTERNAL | EXTERNAL | MANUAL]"
|
|
|
|
|
)
|
|
|
|
|
self.write(f"{command_header}:STAT ON")
|
|
|
|
|
|
|
|
|
|
def trigger_sweep(self, channel: Literal[1, 2]):
|
|
|
|
|
self.write(f":SOUR{channel}:SWE:TRIG:IMM")
|