Better documentation + examples

This commit is contained in:
2024-02-28 12:04:31 +01:00
parent a3b100b419
commit 2ee2b10c40
67 changed files with 17311 additions and 37 deletions

43
examples/common.py Normal file
View File

@@ -0,0 +1,43 @@
import math
import sys
from typing import Literal
from fn_gen import DG2052
N_CYCLES = 500 # Cycles
AMPLIFICATION = 13/2 # dB
V_STEPS = 10 # steps
F_STEPS = 30 # steps
FREQ_START = 10 # Hz
FREQ_STOP = 1000 # Hz
STEP_DURATION = 10 # sec
def abs(x) -> float:
"""
Gets the absolute value of the input.
"""
return math.sqrt(x * x)
def close_output(fg: DG2052, channel: Literal[1, 2]):
"""
Closes the output channel of the function generator.
"""
fg.set_output(channel, False)
fg.close()
sys.exit(0)
def get_preamplified(amplification: float, post: float) -> float:
"""
Calculates the pre amplification value from the amplification and the post amplification value.
"""
return post / (10 ** (amplification / 20))
def get_postamplified(amplification: float, pre: float) -> float:
"""
Calculates the pre amplification value from the amplification and the post amplification value.
"""
return pre * (10 ** (amplification / 20))

137
examples/discrete_sweep.py Normal file
View File

@@ -0,0 +1,137 @@
import time
import argparse
import fn_gen.errors as fg_err
from common import (
close_output,
get_preamplified,
get_postamplified,
AMPLIFICATION,
N_CYCLES,
V_STEPS,
F_STEPS,
FREQ_START,
FREQ_STOP,
STEP_DURATION,
)
from fn_gen import DG2052
import numpy as np
def calculate_n_samples(freq: float, ts: float, n_cycles: int) -> int:
"""
Calculates the number of samples based on the frequency of the signal, the sampling time and the number of cycles within one step.
Parameters
---------
freq: int
The frequency of the signal
ts: float
The sampling time
n_cycles: int
The number of cycles within a step
Returns
------
n_samples: int
The number of samples (can be multiplied by the sampling time (ts) to get the total duration)
"""
return int(round(n_cycles / (ts * freq)))
def discrete_sweep(
v_min: float,
v_max: float,
v_steps: int,
adaptive: bool,
step_duration: int,
freq_start: int,
freq_stop: int,
f_steps: int,
):
##################### PROGRAM START ###########
freqs = np.logspace(np.log10(freq_start), np.log10(freq_stop), f_steps)
v_min = get_preamplified(AMPLIFICATION, v_min)
v_max = get_preamplified(AMPLIFICATION, v_max)
volts = np.linspace(v_min, v_max, v_steps)
print(freqs)
fg = DG2052("TCPIP::192.168.1.11::INSTR")
channel = 2
try:
print(fg.whoami())
print("")
print(f"Output{channel} Impedance: {fg.get_output_impedance(channel)} Ohm")
print(f"Output{channel} Load: {fg.get_output_load(channel)} Ohm")
print(f"Output{channel} Voltage Limits: {fg.get_output_volt_limits(channel)} V")
for v in volts:
for freq in freqs:
sampling_rate = 10 * freq
n_samples = calculate_n_samples(freq, 1 / sampling_rate, N_CYCLES)
if adaptive:
step_duration = n_samples * (1 / sampling_rate)
print(f"V: {get_postamplified(AMPLIFICATION, v)} V")
print(f"Freq: {freq} Hz")
print(f"Duration: {step_duration} s")
print(f"N_Samples: {n_samples} samples")
fg.set_output(channel, False)
fg.set_sine_wave(channel, freq, v, 0, 0)
fg.set_output(channel, True)
print(
f"Output{channel}: {fg.get_output_signal(channel)} | {fg.get_output_state(channel)}"
)
time.sleep(step_duration)
# fg.set_output(channel, False)
print(f"Output{channel} State: {fg.get_output_state(channel)}")
except fg_err.ValueOutOfBoundsError as err:
print(err)
except fg_err.UndefinedValueError as err:
print(err)
except KeyboardInterrupt:
close_output(fg, channel)
finally:
close_output(fg, channel)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="This program is for testing the DG2052 function genrator library. It does a discrete sweep with the supplied parameters."
)
parser.add_argument(
"--vmin", type=float, required=True, help="The minimum voltage supplied"
)
parser.add_argument(
"--vmax", type=float, required=True, help="The maximum voltage supplied"
)
parser.add_argument(
"--v-steps", type=int, default=V_STEPS, help="The number of voltage steps"
)
parser.add_argument(
"--freq-start", type=int, default=FREQ_START, help="The starting frequency"
)
parser.add_argument(
"--freq-stop", type=int, default=FREQ_STOP, help="The stop frequency"
)
parser.add_argument(
"--f-steps", type=int, default=F_STEPS, help="The number of steps"
)
parser.add_argument(
"--step-duration",
type=int,
default=STEP_DURATION,
help="The duration of each step",
)
parser.add_argument(
"--adaptive-step",
action="store_true",
help="Adapts the step duration to the frequency of the step",
)
args = parser.parse_args()
discrete_sweep(
v_min=args.vmin,
v_max=args.vmax,
v_steps=args.v_steps,
adaptive=args.adaptive_step,
step_duration=args.step_duration,
freq_start=args.freq_start,
freq_stop=args.freq_stop,
f_steps=args.f_steps,
)

View File

@@ -12,13 +12,12 @@ def generate_sine_wave(v: float, freq: int, phase: int):
try:
print(fg.whoami())
print("")
# input("Press Enter to start...")
fg.set_sine_wave(channel, freq, v, 0, phase)
print(
f"Output{channel}: {fg.get_output_signal(channel)} | {fg.get_output_state(channel)}"
)
fg.set_output(channel, True)
print(f"Voltage: {get_postamplified(AMPLIFICATION, v):.2f} V")
print(f"Voltage: {get_postamplified(AMPLIFICATION, v):.2f} V | Pre_amplified: {v} V")
print(f"Frequency: {freq} Hz")
print(f"Output{channel} State: {fg.get_output_state(channel)}")
while True:

View File

@@ -0,0 +1,6 @@
from fn_gen import DG2052
if __name__ == "__main__":
fg = DG2052("TCPIP::192.168.1.11::INSTR")
for channel in [1, 2]:
fg.set_output(channel, False)

135
examples/sweep_2.py Normal file
View File

@@ -0,0 +1,135 @@
import time
import argparse
import fn_gen.errors as fg_err
from common import close_output, abs, get_preamplified
from fn_gen import DG2052
from fn_gen.enums import SweepSignalType, SweepSpacing, SweepTriggerSource
def sweep_over_signal(
signal: str,
v_min: float,
v_max: float,
delay: int,
duration: int,
freq_start: int,
freq_stop: int,
phase: int,
spacing: str,
):
fg = DG2052("TCPIP::192.168.1.11::INSTR")
v_min = get_preamplified(13.0, v_min)
v_max = get_preamplified(13.0, v_max)
v = (v_max - v_min)/2
channel = 2
# signal_type = SweepSignalType.SINE
match signal:
case "sine":
fg.set_sine_wave(channel, freq_start, v, 0, 0)
case "square":
fg.set_square_wave(channel, freq_start, v, 0, 0)
case "ramp":
fg.set_ramp(channel, freq_start, v, 0, 0)
spacing_type = SweepSpacing.LOG
match spacing:
case "lin":
spacing_type = SweepSpacing.LIN
case "log":
spacing_type = SweepSpacing.LOG
try:
print(fg.whoami())
print(f"\nOutput{channel} Impedance: {fg.get_output_impedance(channel)} Ohm")
print(f"Output{channel} Load: {fg.get_output_load(channel)} Ohm")
print(f"Output{channel} Voltage Limits: {fg.get_output_volt_limits(channel)} V")
print(
f"Output{channel}: {fg.get_output_signal(channel)} | {fg.get_output_state(channel)}"
)
fg.set_output(channel, True)
time.sleep(delay)
# fg.trigger_sweep(channel)
t0 = time.time()
t1 = time.time()
freq = freq_start
freq_delta = (freq_stop - freq_start) / (duration*10_000)
while (t1 - t0) < duration:
print(f"Current Frequency: {fg.get_output_signal(channel)}")
if spacing_type == SweepSpacing.LIN:
freq = freq + freq_delta
match signal:
case "sine":
fg.set_sine_wave(channel, freq, v, 0, 0)
case "square":
fg.set_square_wave(channel, freq, v, 0, 0)
case "ramp":
fg.set_ramp(channel, freq, v, 0, 0)
time.sleep(0.0001)
t1 = time.time()
print(f"Output{channel} State: {fg.get_output_state(channel)}")
except fg_err.ValueOutOfBoundsError as err:
print(err)
except fg_err.UndefinedValueError as err:
print(err)
except KeyboardInterrupt:
pass
finally:
close_output(fg, channel)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="This program is for testing the DG2052 function genrator library. It sweeps over a signal with the supplied parameters."
)
parser.add_argument(
"-s",
"--signal",
type=str,
choices=["sine", "square", "ramp"],
default="sine",
help='The type of signal being sweeped',
)
parser.add_argument(
"--vmin", type=float, default=0, help="The minimum voltage supplied"
)
parser.add_argument(
"--vmax", type=float, default=1, help="The maximum voltage supplied"
)
parser.add_argument(
"-d",
"--delay",
type=int,
default=0,
help="The buffer time before the sweep starts",
)
parser.add_argument(
"--duration", type=int, default=5 * 60, help="The duration of the sweep"
)
parser.add_argument(
"--freq-start", type=int, default=10, help="The start frequency of the sweep"
)
parser.add_argument(
"--freq-stop", type=int, default=1000, help="The stop frequency of the sweep"
)
parser.add_argument(
"-p",
"--phase",
type=int,
default=0,
help="The phase shift of the signal generated (must be between 0 and 360)",
)
parser.add_argument(
"--spacing",
type=str,
choices=["lin", "log"],
default="log",
help='The spacing of the sweep',
)
args = parser.parse_args()
if (
args.phase not in range(0, 360)
or args.spacing not in ["lin", "log"]
or args.signal not in ["sine", "square", "ramp"]
):
parser.print_help()
exit(1)
sweep_over_signal(args.signal, args.vmin, args.vmax, args.delay, args.duration, args.freq_start, args.freq_stop, args.phase, args.spacing)